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ABSTRACT

EQUITABLE LIGHTWEIGHT MELANOMA PRESCREENING WITH DEEP NEURAL
NETWORKS

By

Caleb Matthew Grenko

Melanomas are the most deadly form of skin cancer and early detection of malignant melanoma

lesions is critical to improving patient outcome. Self-screening is universally recommended, yet it

is still difficult for the layperson to correctly identify suspicious moles. Recent efforts in medical

computer vision have attempted to remedy this problem by creating algorithms that are able to au-

tomatically classify a skin lesion into benign (noncancerous) or malignant (cancerous). However,

these algorithms tend to be largely focused on achieving research-oriented goals such as obtaining

the best performance at a competition or finding novel approaches to image classification. This

paper will evaluate the feasibility of a small model deemed a Lambda EfficientNet capable of high

performance on while still being lightweight showing potential utility in mobile prescreening appli-

cations. Additionally, automatic clustering of the data reveals patterns of performance disparities

on varying groupings of images, as showing the feasibility of hand-crafted data augmentations

in mitigating performance disparities cross these clusters. Two clustering techniques (feature-

extraction clustering and RGB-mean clustering) revealed distinctive clusters of images. Model

performance on each cluster showed that there is a strong positive correlation between the number

of training samples within the cluster and the performance of models on that cluster. Additionally,

augmenting the images to show varied skin tone not only did not improve model performance–

instead it negatively impacted the ability of models to detect melanomas. While raw performance

is most commonly evaluated when discussing machine learning models, it is important to bring a

more nuanced discussion of equitable performance when dealing with data that implicitly involves

skin color. Additionally, while some augmentations are able to help models achieve better and

more generalized performance, the inclusion of racially diverse and representative data cannot be

replaced.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The goal of this research is to begin to evaluate deep learning as a tool for user-friendly

prescreening of melanoma as well as expand on usual techniques of evaluating model performance

through the assessment of subgroups of images clustered through visual characteristics. This thesis

will emphasize the need to evaluate the impact of skin tone on models rather than just the overall

performance, thus leading to tools which can more equitably serve marginalized users.

1.2 Background

This thesis consists of elements from the fields of Biology, Medicine, Machine Learning,

Statistics, and of course Ethics. This section will provide the pertinent background across this

range of disciplines that a reader needs to appreciate this thesis.

1.2.1 Bioinformatics

Bioinformatics lies at the intersection of biology and computer science. More specifically, bioin-

formatics focuses on the development of tools that enable the analysis of biological data. Bioin-

formatics is commonly used to analyze genomic, transcroptomic, and proteomic data in order to

discover genes associated with diseases and potentially identify targets for treatment [1]. Since

the completion of the Human Genome project [2] bioinformatics has been an invaluable tool into

understanding molecular interactions within cells, but the scale of biological data is not limited to

molecular mechanics. While many equate bioinformatics with genomics, biological data comes in a

wide variety of forms such as micromolecular data [3], radiographs [4], whole slide histopathology

images [5], and miscellaneous data such as health records [6] or gross images of lesions [7].
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1.2.2 Machine Learning

Machine learning is a field which focuses on building algorithms that can learn from data and

improve their performance through time and experience. This field tackles tasks such as regression,

classification, segmentation, and many others applications [8] and has become a popular tool for

biomedical data analysis.

1.2.3 Deep Learning

Deep learning is a discipline within machine learning which aims to create algorithms which can

learn fromdata via deep neural networks. The history of artificial neural networks dates back to 1957

when a psychologist named Frank Rosenblatt [9] created the single-layer neural network dubbed

the Perceptron- a machine capable of learning from data and outputting a binary classification

which served as the foundation for learning algorithms. Soon Alexey Grigoryevich Ivakhnenko

and Valentin Grigor’evich Lapa [10] built upon Rosenblatt’s work by transforming the Perceptron

into a hierarchical multi-layer network (later known as a "deep" network– referring to the presence

of hidden layers within the network). Over the years this work has been expanded greatly and deep

learning has been applied with great success to tasks such as computer vision, natural language

processing, reinforcement learning, and many other tasks. The two deep learning advances most

relevant to this thesis are the fully connected network (FCN) [11] and the convolutional neural

network (CNN) [12].

1.2.4 Fully Connected Networks

Deep neural networks work by transforming an input into an output via successive transformations

called layers. Layers can come in a variety of forms with the simplest being the fully connected

layer. A fully connected layer can be abstracted as a linear function Φ(x) that takes an input x and

maps it to an output H through the equation:

Φ(], x, b) = f(]x + b)
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where x is an input vector, ] and b are parameters of the layer called the weights and biases, and

f is a function that scales the output of]x + b to [0, 1].

A fully connected network is a series of these layers which take an input x and map it to an

output y. Each layer has multiple neurons, each with their own weight and bias, and has each

neuron in a layer connected to each neuron in the next layer, making " × # connections for two

layers of size " and # .

Additionally, a fully connected network with ! layers can be represented mathematically via

successive transformations with fully connected layers:

5 (x) = Φ!−1(Φ!−2(...Φ(^, )0...)\!−2)\!−1)

Where Φ# is the Nth layer’s linear function and \# is the parameters (weights and biases) of the

Nth layer.

Fully connected networks are generally considered "universal approximators," meaning that

they can learn and generally approximate any function mapping a fixed-size input to a fixed-size

output given an arbitrarily sufficient width and depth. The term "fully connected" refers to the fact

that every neuron in a layer is connected to every neuron in the next successive layer.

Consider an instance where a user passes a 28?G × 28?G square image of a handwritten digit

into a fully connected network for classification. Since fully connected networks require a vector of

activations as an input, then the FCN would first linearize (or flatten) the square image input into a

784G1 single-column vector before propagating the values through the network. While FCNs have

the advantage of being incredibly versatile, it comes at the cost of ignoring valuable information

about the structuring of the data, and thus are said to be data agnostic.

1.2.5 Convolutional Neural Networks

While the spatial layout of values within an input are ignored by a fully connected network, convo-

lutional networks are specifically designed to incorporate spatial information into their processing.

3



The main component of the convolutional neural network is the convolutional layer. How-

ever, rather than using the matrix multiplication of weights (]) by the layer input (x), it uses a

convolutional operator and can be written as:

Φ(], x, b) = f(] ∗ x + b)

where ∗ denotes a convolutional operation of input x by weights ]. This convolutional operation

incorporates spatial weighting of values and can be done over an arbitrary number of dimensions

within a tensor (a uniformly typedmultidimensional array) making it incredibly useful for computer

vision tasks.

Additionally, convolutional neural networks can be viewed as a combination of two distinct

components: feature extraction and classification. Feature extraction typically consists of a series

of convolutional layers and other operations such as batch normalization and max pooling. As

the name implies, feature extraction takes the initial input and outputs a set of latent features that

describe the input through learned numerical representations. From here, the classification portion

of the network (typically a series of fully connected layers) weighs the output features and uses

them for classification.

Many variations upon the typical convolutional neural network exist for many different tasks

(segmentation, regression, generation, etc.), but these techniques are beyond the scope of this thesis

and we will instead focus on network as a means of classification.

1.2.6 Data Augmentations

The term data augmentation refers to altering data during training to create models with more

accurate or generalizable results. For example, if one were training a model to classify species of

birds, it would be helpful to not just train the model on the original images, but also flip and rotate

the images, insert noise, and use other data alterations such as cropping and ablations to force the

model to learn more robust representations of the birds [13].
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1.2.7 Medical Informatics

Recently computer vision (CV) techniques have been applied to medical images for bioinformatic

analysis. Advances in pathology and radiology have led to greater volumes of medical imaging data

at higher resolutions than ever before. This influx of high-quality data has rapidly expanded the

field of medical image analysis and led to applications of both traditional computer vision methods

as well as the development of more advanced deep learning computer vision methods.

1.2.8 Melanomas

Skin cancer is the most common form of cancer in the United States [14]. Skin cancer is a class

of diseases that can be further stratified into basal cell carcinoma (BCC), squamous cell carcinoma

(SCC), and melanomas. Currently melanoma is estimated as the fifth most common cancer in

men and the sixth most common cancer in women in the United States [14]. When detected early,

melanomas are highly treatable and only require minor surgery. However, melanomas can rapidly

metastasize (spread to other organs) to lymph nodes, the lungs, the liver, or other critical organs

such as the brain. This means that early detection and intervention is essential to improving the

prognosis of melanomas.

The most common sites of melanoma incidence are dependent on sex. For males the majority

of cases are located on the back, whereas melanomas are most likely found on arms and legs for

women [14, 15]. Additionally individuals from white populations are ten times more likely to be

diagnosed with a cutaneous (on the skin) melanomas than black, Asian, or Hispanic individuals

[14]. More specific figures estimate 27.5 new cases of melanoma per 100,000 in white populations

as opposed to 1.1 per 100,000 in black populations [16]. A notable exception are plantar (on the

bottom of the foot) melanomas, which occur at identical rates in white and black populations [14],

and non-white populations are at a higher risk for mucosal melanomas [14].
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1.2.9 The Data

InMay 2020 the Society for Imaging Informatics inMedicine (SIIM) and International Skin Imaging

Collaboration (ISIC) collaborated to publish a large data set ("SIIM-ISIC") on the competition

platform Kaggle which consisted of 44, 108 images of melanomas and moles along with associated

information such as patient age, sex, and the anatomical location of the image [17]. This data set

was the result of the multi-institutional collaboration between six hospitals from across the world.

This data set came as an expansion upon the smaller ISIC-2019 data set [17]. Additionally, this

data set was novel in that it is the first to include multiple moles for individual patients in an attempt

to make the data a more similar representation of real dermatological evaluation where multiple

moles are evaluated for one individual. All images and diagnoses were validated via retrospective

review which included reviewing the pathology report. Plausible diagnoses were referred to expert

dermatopathologists for consultation. Each data entry (image, approximate age, sex, and general

anatomical site) was labeled as either benign or malignant. Malignant diagnoses included both

melanoma in situ as well as invasive melanomas. All other diagnoses were designated as benign

including severely dysplastic nevi [17].

1.2.10 Model Bias in Machine Learning

Model bias (not to be confused with weights and biases) refers the general idea of how well a model

is fit to a set of data. A model that does not adequately capture the trends of the training data is

said to be highly biased. Conversely, a model that is highly suitable for predictions on its training

data is said to have low bias.

1.2.11 Models Inherit Biases

Machine learning algorithms can also inherit the biases (in intolerance sense) of the actual data they

were trained on. A common example is that of a model which was built to predict who a company

would want to hire [18]. This model was trained on past resumes of both successful company hires

6



and rejected applicants. This historical data inherited the biases of former recruiters, particularly in

that female applicants be almost automatically rejected. Any phrases found containing "women’s"

would penalize the application, even if it was "women’s chess club captain," and thus in 2018 the

project was cancelled. The machine learning algorithm successfully learned from the data and

inherited the implicit bias of the past [18].

In a more medically oriented example, one study showed that there are sex, ethnic, and racial

disparities in the care and outcomes of patients hospitalized for coronary artery disease ("CAD")

[19]. The analysis showed that compared to men, women are less likely to receive optimal care for

CADand ultimately had a significantlymortality rate. Additionally, black patientswere significantly

more likely to die than white patients. If a machine learning algorithm aimed at predicting the

severity of CAD was trained on this data, it would pick up on these sex-based and race-based

patterns and predict more severe disease for black and female patients than it would for white male

patients [19].

If algorithms are able to learn from the aforementioned records and mistakenly learn bias in

scenarios such as CAD, then algorithms that directly make inferences from the skin should be

thoroughly vetted and understood for how they are influenced by skin-tone.

1.3 Scope and Significance

The synthesis of all of this background is to use machine learning, and more specifically deep

learning, to create a tool that allows users to predict whether or not a mole is potentially cancerous.

This thesis aims to achieve three notable contributions:

1. To successfully design and train a user-oriented network that uses both patient information

and an image as input, and outputs a classification which predicts whether the image contains

a cancerous mole or not.

2. Validate the equity of the model across various skin tones to investigate the importance of

skin tone in the network’s prediction.
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3. Evaluate if targeted data augmentations can improve the performance of models across

varying skin tones.

While this thesis strives to achieve all of the contributions listed above, all of the goals lead back

to a central theme: how do we fairly and equitably use machine learning to create a tool that could

have immediate impacts on the prognosis of melanomas? This question is tied up with technical,

statistical, and ethical questions that will all be addressed in the coming chapters.
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CHAPTER 2

LITERATURE REVIEW

2.1 Machine Learning

Machine learning has an extensive history, but this literature review will mostly focus on the

fundamental and relevant contributions in regards to this project. While extensive contributions

have built up to the machine learning techniques used in this paper, many fall beyond the scope of

this literature review. For a more extensive review on deep learning, see Goodfellow et al. [11].

Three broad categories of deep learning can be constructed: supervised, semi-supervised, and

unsupervised. Supervised learning utilizes fully labeled data in order to take an input ^ and map

it to an output, H. Supervised learning can further be divided into classification and regression.

Regression seeks to predict an numerical value as an output whereas classification tasks, such as

that done in this thesis, involve predicting a categorical output.

The first and perhaps most famous instance of supervised classification was done by Frank

Rosenblatt in 1958 [9] which served as the foundational example for machine learning. This

network worked by mathematically modeling neurons using backpropagation to fit the parameters

to the input data. The perceptron served as a foundational example for machine learning and

modern fully connected networks (FCNs).

Later Fukushima and Miyake addressed the challenge of incorporating spatial information into

deep neural networks through the Neocognitron– a precursor to the modern convolutional neural

network (CNN) [?]. Many years and innumerable advances later, CNNs are the predominant

algorithm for image classification.

Typically CNN models are developed on restricted resources and later scaled through altering

the network depth, width, or resolution. This haphazard scaling led to inaccurate results and wasted

resources, so in 2019 Tan and Le proposed EfficientNets [20] which delicately balanced parameters

of model scaling to create networks that were significantly smaller, faster, and more accurate than

9



other state of the art methods at the time.

While EffifcientNets changed how researchers view model scaling, others were taking a more

divergent approach to machine learning research. In 2017 researchers at Google Brain developed

the Transformer [21] which could model long-range interactions within sequences of data. Initially

this was applied towards language processing tasks (e.g. translation), but in 2018 Yuan and Wang

applied transformers to image segmentation [22] to incorporate context into the process. Soon

others followed suit [23, 24, 25] and others developed attention blocks [26, 27] for integration into

larger network architectures. While attention mechanisms were paradigm shift in image analysis

and were breaking records for start of the art accuracy, they also posed a steep memory requirement

which hindered the application of attention to multidimensional data such images [28].

In ICLR 2021 a large step was taken to improve memory efficiency while still incorporating

the internal data structure through the relative distance between pixels. These networks, called

Lambda Networks [28], serve to model long-range interactions while decreasing the number of

training parameters, increasing the data throughput thus improving on training time, and doing all

this while still maintaining state of the art accuracy.

2.2 Melanomas and Diagnosis

Malignant melanomas (also referred to simply as melanomas) arise from melanocytes in the

skin. Melanocytes are the cells found most commonly in the epidermis and are responsible for

producingmelanin granules which pigment the skin and protect the underlying cells from ultraviolet

radiation [29]. While there are many contributing risk factors for melanomas such as age, race,

sex, and family history, the most important risk factor for melanoma is exposure to ultraviolet light

due to it’s importance in the development of melanomas [29] as well as the ability of the individual

to modify their behavior to directly control their risk [14].

Melanomas typically originate in the epidermis, but they can also arise from non-pigmented

melanocytes in the brain, mouth, or eye [30]. Additionally, melanomas quickly metastasize to

critical organs such as the lymph nodes, lungs, and brain [30] which significantly contribute to their
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lethal nature. One of the most important factors to improving the prognosis of melanoma patients

is catching lesions as soon as they appear thus allowing for early intervention [31]. As such, a

long-standing recommendation is for individuals to regularly conduct a self-examination and see a

physician about any suspicious moles. While conducting a self examination, a helpful mnemonic

ABCDE; asymmetry, border (irregular), color (nonuniform), diameter (large), and evolving.

There aremultiple steps leading from the initial self-examination of amelanoma to the diagnosis.

When initially seeing a physician about a suspicious mole, the physician will typically first visually

examine the mole using a dermatoscope. Dermatoscopy (also known as dermoscopy) is non-

invasive technique which allows for the visual assessment of the surface of skin and provides a fine

enough resolution to show morphological features that are invisible to the naked-eye. This allows

physicians to diagnose melanoma based on pigment networking, irregular dots and globules,

irregular pigmentation, regressive structure, vascularization, or other microscopic features [14].

The other method of melanoma diagnosis relies on excision and histopathological analysis [32],

but these approaches are out of this paper’s scope.

2.3 Melanoma Classification

There have been a variety of attempts to create networks capable of classifying melanomas

and other skin lesions, but most have been within the last decade due to the rapid advancement of

computer vision techniques. Since dermatologists use both dermatoscopy and histopathology to

diagnose melanoma, two disciplines have evolved around melanoma classification as well. While

histopathology analysis is an ever-growing field, these techniques are out of the the scope of this

thesis.

Earliest attempts at gross melanoma classification relied on non-standard color spaces and hand-

crafted texture features inspired by dermatologist evaluation criteria. These techniques utilized the

macroscopic characteristics of melanoma such as irregular streaking [33], regression structures

[33], blotching [34], inconsistent color [35, 36, 37], pigment networking [37], and granularities

[38]. These techniques would typically mine features related to shape (aspect ratio, diameter,
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circularity, symmetry, etc.), color features (mean and standard deviation, etc.), and textural features

(gray level co-occurrence matrices) [39].

These features would be then passed to algorithms such as K-nearest-neighbors [?], Support

Vector Machines [39], or basic artificial neural networks [40] to classify the images [41].

Later techniques became more sophisticated with the popularization of deep learning in com-

puter vision. The most popular approaches utilized deep convolutional neural networks [42]. These

models Then move in to the more specific discussions relied on large networks or even multiple

large networks (referred to as an ensemble) combined into one system [43]. While these networks

produce accurate results, they also become increasingly difficult to validate due to their complexity

and black-box nature. One of the most recent state-of-the-art approaches to melanoma classification

used an ensemble of EfficientNets creating a large model capable of accurately predicting cases of

melanoma [44].

2.4 Melanoma Data

There are three main data sets for the gross diagnosis of skin lesions. While dermatoscopy

has been accessible for imaging due to it’s simple and non-invasive nature, there have not been

many large and accessible data sets until recently due to technological limitations. One of the first

notable dermatoscopy data sets, the Interactive Atlas of Dermoscopy, was published in 2004 [45].

However, due to low-bandwidth internet and insufficient storage technology, the data was only

able to be distributed a set of CD-ROMs that could be purchased for $200 (with an accompanying

booklet). The accompanying information within the booklet and CD-ROMs described how to

diagnose skin lesions while avoiding false-positives, lookalikes, and other pitfalls. While this

information was through yet brief, it meant that the Interactive Atlas of Dermoscopy was intended

for training physicians– not algorithms.

One of the later and more widely used dermatoscopic skin lesion data sets was PH2 [46] which

was published in 2015 and made freely available for educational and research purposes. This data

set contained detailed information on the formal diagnosis, assessment of several dermatoscopic
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features, andmanual segmentation. Due to the time-consuming nature of creating these annotations,

PH2 only contained 200 imageswhich is considered sparse compared to traditionalmachine learning

data sets. However, PH2 still remains a valuable database for model validation as well as medical

training [46].

One year after the publication of PH2, the International Skin Imaging Collaboration (ISIC)

released their first data set (ISIC 2016) intended for melanoma detection at the International Sym-

posium at Biomedical Imaging (ISBI) in 2016 [7]. This initial data set contained 900 dermatoscopy

training images and an additional 379 testing images. In subsequent years, the ISIC expanded the

data set to approximately 2,000 in 2017, 12,500 in 2018 , 25,000 in 2019, and eventually 44,000

images in 2020 [?] after collaborating with the Society for Imaging Informatics inMedicine (SIIM).

As of the writing of this paper, [17] is the largest and most robust data sets to date and includes

multiple moles for each patient which is more representative of true dermatological evaluation.

Additionally, has the advantage of containing images with a variety of perspectives and lighting

helping develop robust algorithms [17].

2.5 Algorithmic Bias

As artificial intelligence becomesmore entwined in healthcare it will potentially improve patient

outcomes– but maybe not for all. There are many inequalities presented in healthcare in America

in the current era [47]. While some view artificial intelligence as the solution to these inequalities

[48], others view these complex algorithms as ways of perpetuating the historical bias [?].

Black-box models present the challenge of being not easily interpretable. Due to this, medical

applications of neural networks need to be thoroughly vetted before deployment. There are a number

of instances in which machine learning learned to predict medical outcomes through patient data

recorded in electronic health records, but rather than providing insightful answers they instead

inherited the bias of those who wrote the records.

One hypothetical example presented by Parikh et. al [49] relied on a real statistical analysis of

the National Library of Medicine’s MEDLINE database from 1970-2005. This analysis showed
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that records of older women presenting with acute coronary syndrome (“ACS") tended to present

with atypical symptoms and may by frequently misdiagnosed [?]. If a machine learning model

were fit to this data, it may recommend not testing for ACS in older women due to their frequent

lack of diagnoses [49]. While this is a very specific example, electronic health records are heavily

prone to biased data due to various processes within the healthcare system itself [19].

Gianfrancesco et. al [50] categorized medical data bias into three classes: sample size, missing

data,and misclassification or measurement error. Thus it is important not to only look at what is in

the data, but also what is missing from the data. Missing data results from vulnerable populations

having disparate health outcomes due to poor medical literacy, poor access to health care, or other

difficulties. This may be reflected in data for vulnerable populations which only represent the

worst cases and may skew the expected risk and result in erroneous inferences for certain groups.

A small sample size results in some populations of patients not being represented in sufficient

numbers in medical data. Inferences on members of these groups cannot be made with statistical

confidence due to the small sample size potentially not being representative of the whole. Finally,

misclassification or measurement error stems from vulnerable patients being more likely to only

have access to teaching clinics or poorly staffed hospitals, for example. This results in less accurate

diagnoses and algorithms trained on this data will result in incorrect predictions as a result of

incorrect diagnoses.

2.6 Smartphone App and Need for Validation

Since melanomas are typically first discovered by the actual patient and the early detection of

melanoma is critical to improving prognosis, making melanoma screening as accessible as possible

has been a long-standing priority [?]. This can be seen in the development of early smartphone

applications ("apps") aimed at helping users self-screen.

Early apps were simple and focused on educating users on risk factors and self-examination

strategies (such as the ABCDE mnemonic). Many apps also allowed users to save and store images

of skin lesions for review either by themselves of a dermatologist and reminded users to monitor
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their skin lesions. A few even offered expert review of images. However, very few of these apps

allowed the users to actually asses the risk of individual skin lesions, and when they did it was

simply though a series of questions and the diagnostic accuracy had not been validated [51].

Since the integration of the smartphone into personal life, the technology in phones has advanced

exponentially. Today smartphones are equipped with megapixel cameras, gigahertz processors, and

gigabytes of ram. As phones have advances, so have analysis techniques. Notable approaches have

used convolutional neural networks to provide fine-grained classification of skin lesions [?], while

others remain apps focused on education and monitoring [52]. Most recently, a handful of popular

skin lesion detection apps (TeleSkin, skinScan, and SkinVision) were evaluated and shown to have

poor diagnostic accuracy when identifying premalignant or malignant lesions [53].

Today, an estimated 6.3 billion camera-equipped smartphones are in the pockets of individuals

around the world [54] proving that a smartphone app could serve as widely-available low-cost

screening. However, the accuracy of these apps must be thoroughly vetted for bias against skin

tone to ensure the equity of algorithms among users.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data Acquisition

Data was downloaded from the online SIIM-ISIC 2020 competition page posted on online

competition platform Kaggle.com using Kaggle’s API.

3.1.1 Hardware

Training was done on a high-performance computer at the University of Pennsylvania running a

modified distribution of RedHat Enterprise with a Nvidia V100 and 16GB of VRAM allocated.

An additional 32GB of RAMwas reserved. Additional testing was done on a workstation equipped

with an Intel i7-6700k, 32GB of DDR4 RAM, and an Nvidia GTX 1070 with 8GB RAM running

Debian.

3.1.2 Preprocessing

The initial training data consisted of 37,649 RGB image entries encoded in standard as standard

jpegs. Each image had associated data pertaining to a pseudoanonymized patient ID, approximate

age, biological sex, and approximate anatomical location of the lesion. Each image was initially

loaded and center cropped to provide maximum width in one dimension with a square aspect ratio.

After cropping, the selection was scaled to a 256x256 RGB image to standardize data format with

minimal loss of context.

The .csv files for training and testing data were then loaded and parsed. This involved mapping

<0;4 and 5 4<0;4 to 1 and 0 respectively. Additionally the approximate age of patents was

scaled to a range of [0, 1] by normalizing via the highest age in both dataframes (90 years old).

The approximate anatomical site was converted from a categorical variable (with 10 possible
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values: ‘anterior torso’, ‘head/neck’, ‘lateral torso’, ‘lower extremity’, ‘oral/genital’, ‘palms/soles’,

‘posterior torso’, ‘torso’, ‘upper extremity’, and ‘nan’) to a dummy/indicator variable.

3.1.3 Network Design

The final iterations of the network consisted of two branches: an image processing branch and a

metadata branch.

The image processing branch consisted of an EfficientNet modified with the last convolutional

layer replaced with a lambda convolution to incorporate global context. Each block of the Efficient-

Net consisted of a mobile inverted residual bottleneck which contained an expansion, depthwise

convolution, pointwise convolution, and a batch normalization. The final convolutional bottleneck

was replaced with a lambda convolution to incorporate long-range interactions [28].

The metadata processing branch consisted of a standard fully connected network with three

hidden layers. Additionally a batch normalization, rectified linear unit function (ReLU), and

dropout function (? = 0.2) was placed between each fully connected layer.

Near the end of both branches, the extracted latent feature vectors were concatenated and

propagated through two more layers of a fully connected network before a final classification layer.

3.1.4 Training

3.1.4.1 Training Protocol

To begin training the data was split into an 80/20 training testing split. While a designated testing

set is available from the competition organizers on Kaggle.com, the labels for this data remains

private due to it’s usage in calculating competition leader boards. From there the training data

was further divided into 6 folds for training and validation. Stratified K-Folds was used in order

to preserve the percentage of samples from each class. This was done to ensure that each batch

contained both cases of melanomas and benign lesions for the calculation of evaluation metrics

which otherwise would be difficult due to the large class imbalance.
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Each fold was trained for a maximum of 50 epochs, but early stopping was implemented so

that if the model’s validation ROC-AUC did not improve for 7 sequential epochs then training

terminated for the fold.

During training the adaptive moment estimation ("Adam") optimizer was used with an imple-

mentation of a binary cross entropy with sigmoidal activation (BCE-logits) for the loss function.

Additionally a scheduler was used so that if there was no improvement to the model’s validation

ROC-AUC after 3 epochs, it would decrease the learning rate by a factor of 0.2 to avoid plateaus.

3.1.4.2 Augmentations

After each image was cropped and resized to 256x256, images were ran through a pipeline for

randomized data augmentations. There were two types of augmentations: standard augmentations

and color augmentations. Standard augmentations consisted of the following:

• Small ablations (16x16 black boxes)

• Simulated hair (black lines simulating random hairs)

• Simulated microscopy ring (black ring surrounding the image)

• Random horizontal flipping

• Random vertical flipping

• Random Gaussian noise

These augmentations changed the orientation or basic properties of the image and intended to

modify in ways which would not impact the process an actual dermatologist would use to asses the

lesion (i.e. the ABCDE mnemonic).

In addition to these standard augmentations, a second augmentation pipeline was used which

included the following additional augmentations:
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Figure 3.1: Augmentations by type.

• Light shift: simulate a change in the lighting (temperature and brightness) of the lesion in

the RGB colorspace.

• Mean Shift: take the weighted of the existing RGB image with a randomly generated skin

tone.

• HSV Shift: a limited perturbation of the the hue, saturation, and value of the image to provide

a slightly different color profile.

Each augmentation had a 10% of being called with each accession of an image during training.

Additionally, two data formatting steps were done after the augmentations to reshape the data into

a suitable tensor for each batch and the data was normalized to mean of [0.485, 0.456, 0.406] and

a standard deviation of [0.229, 0.224, 0.225]. The effects of these augmentations on an example

image are seen in figure 3.1. Parameters for all color augmentations were randomly determined at

call-time, meaning that the lighting augmentation, HSV Shift, and RGB Mean shift augmentations

could all produce numerous appearances when called repeatedly on the same image.
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3.2 Network Evaluation

3.2.1 Performance

Several metrics were used to evaluate the performance of the networks. Most technically the

gross performance was evaluated using the area under the receiver operating characteristic curve

("AUC-ROC"). Intuitively this metric shows the variation of sensitivity and specificity at every

threshold within the data. This translates into a rough understanding at how the model performs at

distinguishing each class.

Additionally the positive predictive value ("PPV") and negative predictive value ("NPV") were

used as more intuitive measures for the performance. Intuitively, positive predictive value is the

probability of a positive prediction being correct. Similarly, negative predictive value is defined as

the probability a negative prediction is true. Each is defined as:

%%+ =
)%

)% + �%
#%+ =

)#

)# + �#

Where )%, �%, )# , and �# are the true positives, false positives, true negatives, and false

negatives respectively.

3.2.2 Skin Tone Analysis

To analyze the impact of skin tone on model performance, the training and testing were subjected

to automatic clustering. Inference was run on each cluster within each cluster and results across

clusters and data sets were compared.

To automatically cluster, two types of clustering were employed. In (feature-extraction clus-

tering) the images were run through a pretrained VGG-16 network and the latent representation
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(a 1000-element vector) were clustered with k-means (: = 7) and visualized with t-distributed

stochastic neighbor embedding ("t-SNE").

For the second types of clustering (mean-rgb clustering), RGB images were converted to the

CIE-LAB color space. The lightness channel (often luminance) was thresholded using Otsu’s

method, and the resulting mask was used to remove RGB pixels darker than the determined

threshold. This was done to mask out hair, microscopy rings, and the actual mole. The mean of

the red, green, and blue channels were then taken to find the mean color of the remaining image

(the skin) given a 3-element vector for each image. Similarly to the feature-extraction clustering,

the image vectors were then clustered by k-means (: = 7) and visualized with t-SNE.

These clusters correlated to basic visual properties– most notably skin tone and hair. Next the

entire data set (training and testing) was partitioned into the given clusters, and inference was run

on each cluster. Metrics were then evaluated to determine how the clustering impacted AUC-ROC,

PPV, NPV, sensitivity, and specificity.

3.2.3 Cluster Interpretation

Additionally, the number of images in each cluster were plotted against the AUCs of models

evaluated on that cluster, and Spearman’s correlation coefficient was found for the two distributions.

The 95% confidence interval was also plotted as a translucent region surrounding the regression

line for each model.
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CHAPTER 4

RESULTS

The aim of this research was three fold: create a well-performing network in terms of raw per-

formance, identify sub-cohorts of data withing the training set, and evaluate model performances

across the sub-cohorts to explore the impact of targeted data augmentation on model performance.

4.1 General Network Performance Evaluation

The networks were trained with 6-fold cross validation, and the best performing networks on

the validation data were selected and ran on the testing data that was set aside in the initial data

partitioning. The area under the receiver operating characteristic curve metric (otherwise known

as AUC-ROC or just "AUC") shows how well a model is able to distinguish between positive and

negative classes within the data. The ROC curve is created by taking all predictions (within the

continuous interval [0, 1]) andmatching themupwith their ground truth (0 and 1 as integers). It then

takes all possible thresholds within the continuous interval [0, 1] and uses it to classify the model’s

predictions into 0 or 1, then compares the thresholded predictions against the ground truth. Figure

4.1 shows the receiver operating characteristic in full detail. The high curve above the diagonal

represents that models are able to very clearly distinguish between positive cases (melanomas) and

negative cases (benign lesions). The ROC curves were summarized by calculating the are under

the curve, giving AUCs close to 1 for nearly perfect model performance, AUCs close to 0.5 for

random chance, and models close to 0 for worse than random model performance.

Models trained with each data augmentation condition showed a reasonably high curve repre-

senting good model performance. Table 4.1 shows the best performing models across each of the

three training conditions. Training AUCs ranged from 0.935 to 0.987, and testing AUCs ranged

from 0.961 to 0.983. The light color augmentation showed the best training AUC (followed by the

no color augmentation and then the skin tone augmentation), and the no color augmentation and

light color augmentation tied in testing, with the skin tone augmentation being the worst of the
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Condition Best Val. AUC Testing AUC
No Color Aug. 0.976 0.983
Light Color Aug. 0.987 0.983
Skin Tone Aug. 0.935 0.961

Table 4.1: The ROC-AUC curves of the model selected for each training condition.

three.

4.2 Image Clustering Results

Both methods of clustering showed groupings roughly based on skin tone and other general

image characteristics. Figure 4.2 shows the t-SNE visualization of the clustering for both the

VGG-16 feature extraction method as well as the RGB-mean clustering. Additionally, 9 images

from each cluster were randomly selected and visualized. The number of images in each cluster as

well as number of positive cases in each cluster were also found.

Feature-extraction clustering took images with the dimensions of 256x256x3 and distilled

them to 1000 element latent vectors representing numerous features utilized in typical image

classification.

The t-SNE in Figure 4.2 shows broad clusters with ill-defined boundaries, and visual inspection

of samples from these clusters revealed both wide intra-cluster variability as well as visually similar

images being grouped across multiple clusters.

Contrarily the RGB-mean clustering compressed the 256x256x3 images into 3-element vectors

representing the upper end of the RGB spectrum in the image, thus roughly approximating skin

color. The RGB-mean t-SNE in Figure 4.2 showsmore distinct clusters with clearly defined borders.

Visual inspection of images within the clusters further shows a clear tendency to cluster by color

within images. While this does not always represent skin tone (as seen by the hairy image in figure

2), it presents a more easily interpretable clustering of images. Naturally dark skintones tended to

be grouped in cluster 1, whereas lighter skin tones were more evenly distributed across clusters 0,

3, and 4 with minor variations between them.
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(a) Best validation ROC for models trained with
no color augmentations.

(b) Best testing ROC for models trained with no
color augmentations.

(c) Best validation ROC for models trained with
simple color augmentations (lighting shift).

(d) Best testing ROC for models trained with
simple color augmentations.

(e) Best validation ROC for models trained with
strong color augmentations (lighting shift, HSV
shift, mean RGB shift).

(f) Best testing ROC for models trained with
strong color augmentations.

Figure 4.1: Validation ROC curves for the best models within each training condition.
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Feature Extraction Clustering

#0 #1 #2

#3 #4 #5

(a) Clustering results using VGG-16 feature ex-
traction followed by k-means (: = 6).

RGB Mean Clustering

#0 #1 #2

#3 #4 #5

(b) Clustering results using the mean of RGB con-
tent via k-means (: = 6).

Figure 4.2: Results of each clustering method summarized for both VGG-16 feature extraction (left)
and CIELAB clipping followed by taking the mean of the R, G, and B color channels (right). Top:
t-SNE visualization of the 6-class clustering. Middle: nine images from each cluster were randomly
selected to show a representative appearance of the cluster. Bottom: the number of images within
each cluster (left), and the number of positive cases within each cluster (right).
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4.3 Evaluation on Individual Clusters

All models across all folds for each condition (no color augmentation, light color augmentation,

and skin tone augmentation) were used to evaluate each cluster within the data set. The ROC-AUC,

PPV, NPV, Sensitivity, and Specificity were measured. Figure 4.3 shows the results of each metric.

The two clusterings revealed varying numbers of training samples between clusters. The number

of images within feature-extraction clusters varied from 3,500 to 10,000, with the mean number of

images per cluster equal to 5521 images and a standard deviation of 2332 images. The RGB-mean

clusters had the same mean (due to the fixed size of the combined training and testing set), and a

slightly smaller standard deviation of 2016 images.

Correlations for both the feature-extraction clustering and the RGB-mean clustering showed

that the number of images in a cluster strongly correlate with the performance on that cluster.

Clusters with relatively few training samples perform poorly, and models tend to perform the best

on clusters with the most training samples.

4.4 Cluster Correlations

A strong positive correlation was found between number of training samples in the cluster

and model performance on that cluster for all models regardless of augmentation type 4.4. Both

clusteringmethods showed similar results: the no color augmentation group (‘None’) and light color

augmentation group (‘Some’) showed comparable performance, while the skin tone augmentation

(‘Full’) showed the worst performance across clusters.

4.5 Lightweight Networks are Feasible for Melanoma Screening

The strong performance we see in both Table 4.1 and Figure 4.1 shows high ROC-AUC values

for well-trained models. Each model contained 7,084,717 parameters for a final compressed model

size of 27.5 megabytes. Interpretation of the AUC-ROC curves shows a clear ability of the models

to distinguish between negative and positive samples in both the training and testing sets.
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(a) Model performance evaluated across feature-
extraction clusters

(b)Model performance evaluated across rgb-mean
clusters

Figure 4.3: Model performance evaluated across clusters with feature-extraction clustering (left)
and rgb-mean clustering (right). Metrics from top to bottom: ROC-AUC, PPV, NPV, Sensitivity,
and Specificity.
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Figure 4.4: The correlation between number of training samples in a data set and the performance
of models on that cluster for each augmentation type. Left: correlation using feature-extraction
clustering. Right: correlation using RGB-mean clustering.
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CHAPTER 5

DISCUSSION

The models performed quite well when looking at their ROC-AUCs, yet the implications of

the classification needs to be weighted more carefully than through raw performance metrics.

Automatic clustering and subsequent visualization showed that the data had distinctive clusters

based on relatively interpretable visual properties. Among these clusters there was an uneven

distribution of both training samples as well as performance on the specified clusters revealing a

correlation between the size of a cluster’s contribution to the training data and the performance of

models trained on that the data when evaluating that cluster.

5.1 Clustering Results

The issue with feature-extraction is that it takes an image that is easily interpretable to humans

and converts it to a latent representation which is full of vivid detail to a machine, but not

decipherable to a human. Techniques like activation maps have historically been utilized to provide

insight into the relative importance of image regions, but this is outside the scope of this paper.

Instead, a sample of nine images was shown from each cluster to represent the visual properties of

that cluster.

The feature-extraction clustering resulted in more poorly defined clusters than the RGB-mean

clustering. This is seen both in the t-SNE and visual inspection of figure 4.2. This is due to the

two-stage feature extraction clustering producing 1000 element vectors which were then classified,

leading to uninterpretable features used for other image classification. While there seemed to be

some trend, more experimentation is needed to confirm the visual properties through techniques.

Alternatively, the RGB-Mean clustering showed promise for clustering based on skin color.

The handcrafted feature of filtered pixels is not perfect and shows some in-group heterogeneity,

but visual trends are easily identifiable and the RGB centroid of each cluster directly corresponds

to the mean color within that cluster. This shows potential for RGB-mean clustering to be used
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in the automatic identification of subcohorts in a more targeted manner rather than relying on

feature extraction. Additionally, the condensed RGB vector representation image shows promise

for other methods of data clustering such as GaussianMixtureModels which wouldmore accurately

represent skin tone as a continuum rather than discrete classes.

5.2 Augmentations Cannot Fill in For Inclusion

Performing light augmentations (Figure 3.1) to the temperature and intensity of the illumination

resulted in what appeared to be slightly better AUCs (Figure 4.1 and Table 4.1), though more

experimentation is needed to statistically confirm these findings. Standard augmentations (rotations,

cropping, sheering, and ablation– noted by "none") as well as other non-color shifting (simulated

hairs, microscopy rings) augmentations produced strong results.

Most notably, targeted data augmentations for skin-tone failed to produce better results even in

clusters with darker skin appearances (feature-extraction clustering cluster #5, rgb-mean clustering

clusters #1 and #2). These results show in fact the opposite of the expected result, yet they are

consistent with how dermatologists visually evaluate lesions. Recall "C" of the ABCDE mnemonic

for melanoma self-screening– "color." Additionally, numerous mentions of vascularity and a "blue-

whit veil" [14, 15, 55]. Even whole studies have assessed the importance of the blue color channel

in the assessment of melanomas [56]. By dynamically altering the skin-tone artificially, the image

may lose important visual cues such as the blue veil, or though increasing saturation it may

over-emphasize blood vessels and introduce unfounded indicators of melanoma.

5.3 Implications of Classification

One consideration for the creation of a classifier for consumer use is the thresholding of results.

As seen in the ROC curves (Figure 4.1), varying thresholds for flagging a prediction as positive

result in different rates of false positives and false negatives. In a perfect world the two classes

would be perfectly separable, but medical experts must consider the implications of what a false

positive and false negative could mean for a patient.
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On one hand, the classifier leaning towards giving false positives could potentially be beneficial.

It could encourage individuals with suspicious moles to go to their healthcare provider and get the

mole professionally checked and cleared. While there, the physician could address other health

concerns or other moles in the process, potentially leading to the detection of actual precancerous

or cancerous lesions. Yet on the other side of this, false positives would lead to excessive worry,

potentially unnecessary medical bills, and may even increase wait times for medical care thus

preventing those who actually need to see a dermatologist from getting care. An alternative is

having the model lean towards false negatives. While this would prevent some from unduly worry,

it would clearly be detrimental to others who may leave precancerous moles alone until it is too

late. Whatever the decision is, it is not one to be made lightly.
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CHAPTER 6

CONCLUSION

6.1 Augmentations Fail to Represent the Underrepresented

One of the greatest lessons learned comes from the following revelations: 1) The number of

training samples in clusters had wide variation showing an uneven representation, 2) The relative

number of training samples in the cluster strongly correlate with the performance of models

trained on data containing that cluster, 3) Skintone-specific augmentations failed to improve the

generalizability or performance of the models. These three facts lead to the most important

conclusions of this paper: there is no replacement for inclusion.

6.2 Evaluation is not Black and White

While competitions and papers often chase state of the art performance through maximizing

their ROC-AUC or other evaluative metrics, much more consideration needs to be placed into

model evaluation before these algorithms are ready for consumers. For one, the stratification of

data shows that there is a distinctive need to ensuring that models work equitably within subcohorts

of the data set. If a patient population is underrepresented during training, then the predictions on

their population during deployment will similarly lack as seen in Figure 4.4.

6.3 The Need for Racially Inclusive Data in Imaging Data

While several workarounds were done in this paper to attempt to identify patterns among

the cohort both through feature-extraction and hand-crafted RGB features, it is nearly impossible

to validate this data without a ground truth. This underscores the need for data sets to include

information about a patient’s complexion (such as melanin index) to be included in medical imaging

in order to insure equitable evaluation across subcohorts. Simply recording these measurements

would remove the guesswork and provide for more substantial vetting of models.
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6.4 Future Directions

In the future, more extensive analysis should be done on priorwinning solutions to the SIIM-ISIC

challenge to evaluate how ensemblemodels fair with automatic cluster analysis. Additionally, expert

dermatologists should collaborate with image analysts to create acceptable augmentation which

enhance the generalizability ofmelanoma datawithout negatively impacting equitable performance.
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